## Supplementary Appendix

Venkat Chandrasekaran and Michael I. Jordan

## **Proof of Proposition 5**

As with the proof of Proposition 4, we condition on  $\mathbf{z} = \tilde{\mathbf{z}}$ . Setting  $\boldsymbol{\delta} = \mathbf{x} - \tilde{\mathbf{x}}$  and setting  $\hat{\boldsymbol{\delta}}_n(\mathcal{C}) = \hat{\mathbf{x}}_n(\mathcal{C})|_{\mathbf{z}=\tilde{\mathbf{z}}} - \tilde{\mathbf{x}}$ , we can rewrite the estimation problem [2] from the main paper as follows:

$$\hat{\boldsymbol{\delta}}_n(\mathcal{C}) = \arg\min_{\boldsymbol{\delta} \in \mathbb{R}^p} \quad \frac{1}{2} \left\| (\mathbf{x}^* - \tilde{\mathbf{x}}) + \frac{\sigma}{\sqrt{n}} \tilde{\mathbf{z}} - \boldsymbol{\delta} \right\|_{\ell_2}^2 \quad \text{s.t.} \quad \boldsymbol{\delta} \in \mathcal{C} - \tilde{\mathbf{x}}.$$

Letting  $R_1$  and  $R_2$  denote orthogonal subspaces that contain  $Q_1$  and  $Q_2$ , i.e.,  $Q_1 \subseteq R_1$  and  $Q_2 \subseteq R_2$ , and letting  $\boldsymbol{\delta}^{(1)} = \mathcal{P}_{R_1}(\boldsymbol{\delta}), \boldsymbol{\delta}^{(2)} = \mathcal{P}_{R_2}(\boldsymbol{\delta}), \hat{\boldsymbol{\delta}}^{(1)}_n(\mathcal{C}) = \mathcal{P}_{R_1}(\hat{\boldsymbol{\delta}}_n(\mathcal{C})), \hat{\boldsymbol{\delta}}^{(2)}_n(\mathcal{C}) = \mathcal{P}_{R_2}(\hat{\boldsymbol{\delta}}_n(\mathcal{C}))$  denote the projections of  $\boldsymbol{\delta}, \hat{\boldsymbol{\delta}}_n(\mathcal{C})$  onto  $R_1, R_2$ , we can rewrite the above reformulated optimization problem as:

$$\begin{bmatrix} \hat{\boldsymbol{\delta}}_{n}^{(1)}(\mathcal{C}), \hat{\boldsymbol{\delta}}_{n}^{(2)}(\mathcal{C}) \end{bmatrix} = \arg \min_{\boldsymbol{\delta}^{(1)} \in Q_{1}, \boldsymbol{\delta}^{(2)} \in Q_{2}} \qquad \frac{1}{2} \left\| \mathcal{P}_{R_{1}} \left[ (\mathbf{x}^{*} - \tilde{\mathbf{x}}) + \frac{\sigma}{\sqrt{n}} \tilde{\mathbf{z}} \right] - \boldsymbol{\delta}^{(1)} \right\|_{\ell_{2}}^{2} \\
+ \frac{1}{2} \left\| \mathcal{P}_{R_{2}} \left[ (\mathbf{x}^{*} - \tilde{\mathbf{x}}) + \frac{\sigma}{\sqrt{n}} \tilde{\mathbf{z}} \right] - \boldsymbol{\delta}^{(2)} \right\|_{\ell_{2}}^{2}.$$

As the sets  $Q_1, Q_2$  live in orthogonal subspaces, the two variables  $\boldsymbol{\delta}^{(1)}, \boldsymbol{\delta}^{(2)}$  in this problem can be optimized separately. Consequently, we have that  $\|\hat{\boldsymbol{\delta}}_n^{(2)}(\mathcal{C})\|_{\ell_2} \leq \alpha$  and that

$$\|\hat{\boldsymbol{\delta}}_n^{(1)}(\mathcal{C})\|_{\ell_2} \leq \sup_{\bar{\boldsymbol{\delta}} \in \operatorname{cone}(Q_1) \cap B_{\ell_2}^p} \ \langle \bar{\boldsymbol{\delta}}, \frac{\sigma}{\sqrt{n}} \tilde{\mathbf{z}} + (\mathbf{x}^* - \tilde{\mathbf{x}}) \rangle.$$

This bound can be established following the same sequence of steps as in the proof of Proposition 4. Combining the two bounds on  $\hat{\delta}_n^{(1)}(\mathcal{C})$  and  $\hat{\delta}_n^{(2)}(\mathcal{C})$ , one can then check that

$$\|\hat{\boldsymbol{\delta}}_{n}^{(1)}(\mathcal{C})\|_{\ell_{2}}^{2} + \|\hat{\boldsymbol{\delta}}_{n}^{(2)}(\mathcal{C})\|_{\ell_{2}}^{2} \leq 2\left[\frac{\sigma^{2}}{n}g(\text{cone}(Q_{1})\cap B_{\ell_{2}}^{p}) + \|\mathbf{x}^{*} - \tilde{\mathbf{x}}\|_{\ell_{2}}^{2}\right] + \alpha^{2}.$$

To obtain a bound on  $\|\hat{\mathbf{x}}_n(\mathcal{C})|_{\mathbf{z}=\tilde{\mathbf{z}}} - \mathbf{x}^*\|_{\ell_2}^2$  we note that

$$\begin{aligned} \|\hat{\mathbf{x}}_{n}(\mathcal{C})|_{\mathbf{z}=\tilde{\mathbf{z}}} - \mathbf{x}^{*}\|_{\ell_{2}}^{2} & \leq 2 \left[ \|\hat{\mathbf{x}}_{n}(\mathcal{C})|_{\mathbf{z}=\tilde{\mathbf{z}}} - \tilde{\mathbf{x}}\|_{\ell_{2}}^{2} + \|\mathbf{x}^{*} - \tilde{\mathbf{x}}\|_{\ell_{2}}^{2} \right] \\ & \leq 2 \|\hat{\boldsymbol{\delta}}_{n}^{(1)}(\mathcal{C})\|_{\ell_{2}}^{2} + 2 \|\hat{\boldsymbol{\delta}}_{n}^{(2)}(\mathcal{C})\|_{\ell_{2}}^{2} + 2 \|\mathbf{x}^{*} - \tilde{\mathbf{x}}\|_{\ell_{2}}^{2}. \end{aligned}$$

Taking expectations concludes the proof.  $\Box$ 

## **Proof of Proposition 9**

The main steps of this proof follow the steps of a similar result in [1], with the principal difference being that we wish to bound Gaussian squared-complexity rather than Gaussian complexity. A central theme in this proof is the appeal to Gaussian isoperimetry. Let  $\mathbb{S}^{p-1}$  denote the sphere in p dimensions. Then in bounding the expected squared-distance to the dual cone  $\mathcal{K}^*$  with  $\mathcal{K}^* \cap \mathbb{S}^{p-1}$  having a volume of  $\mu$ , we need only consider the extremal case of a spherical cap in  $\mathbb{S}^{p-1}$  having a volume of  $\mu$ . The manner in which this is made precise will become clear in the proof. Before proceeding with the main proof, we state and derive a result on the solid angle subtended by a spherical cap in  $\mathbb{S}^{p-1}$  to which we will need to appeal repeatedly:

**Lemma 2** Let  $\psi(\mu)$  denote the solid angle subtended by a spherical cap in  $\mathbb{S}^{p-1}$  with volume  $\mu \in \left(\frac{1}{4}\exp\{-\frac{p}{20}\}\right)$ ,  $\frac{1}{4e^2}$ ). Then

$$\psi(\mu) \ge \frac{\pi}{2} \left( 1 - \sqrt{\frac{2\log\left(\frac{1}{4\mu}\right)}{p-1}} \right).$$

**Proof of Lemma 2**: Consider the following definition of a spherical cap, parametrized by height h:

$$J = \{ \mathbf{a} \in \mathbb{S}^{p-1} \mid \mathbf{a}_1 \ge h \}.$$

Here  $\mathbf{a}_1$  denotes the first coordinate of  $\mathbf{a} \in \mathbb{R}^p$ . Given a spherical cap of height  $h \in [0,1]$ , the solid angle  $\psi$ is given by:

$$\psi = \frac{\pi}{2} - \sin^{-1}(h). \tag{10}$$

We can thus obtain bounds on the solid angle of a spherical cap via bounds on its height. The following result from [2] relates the volume of a spherical cap to its height:

**Lemma 3** [2] For  $\frac{2}{\sqrt{p}} \leq h \leq 1$  the volume  $\tilde{\mu}(p,h)$  of a spherical cap of height h in  $\mathbb{S}^{p-1}$  is bounded as

$$\frac{1}{10h\sqrt{p}}(1-h^2)^{\frac{p-1}{2}} \leq \tilde{\mu}(p,h) \leq \frac{1}{2h\sqrt{p}}(1-h^2)^{\frac{p-1}{2}}.$$

Continuing with the proof of Lemma 2, note that for  $\frac{2}{\sqrt{p}} \leq h \leq 1$ 

$$\frac{1}{2h\sqrt{p}}(1-h^2)^{\frac{p-1}{2}} \leq \frac{1}{4}(1-h^2)^{\frac{p-1}{2}} \leq \frac{1}{4}\exp\left(-\tfrac{p-1}{2}h^2\right).$$

Choosing  $h = \sqrt{\frac{2\log\left(\frac{1}{4\mu}\right)}{p-1}}$  we have  $\frac{2}{\sqrt{p}} \le h \le 1$  based on the assumption  $\mu \in \left(\frac{1}{4}\exp\{-p/20\}, \frac{1}{4e^2}\right)$ . Consequence quently, we can apply Lemma 3 with this value of h combined with (10) to conclude that

$$\tilde{\mu}\left(p,\sqrt{\frac{2\log\left(\frac{1}{4\mu}\right)}{p-1}}\right) \le \mu.$$

Hence the solid angle  $\psi\left(\tilde{\mu}\left(p,\sqrt{\frac{2\log\left(\frac{1}{4\mu}\right)}{p-1}}\right)\right)$  is less than the solid angle  $\psi(\mu)$ . Consequently, we use (10) to conclude that

$$\psi(\mu) \ge \frac{\pi}{2} - \sin^{-1}\left(\sqrt{\frac{2\log\left(\frac{1}{4\mu}\right)}{p-1}}\right).$$

Using the bound  $\sin^{-1}(h) \leq \frac{\pi}{2}h$ , we obtain the desired bound.  $\square$  **Proof of Proposition 9:** We bound the Gaussian squared-complexity of  $\mathcal{K}$  by bounding the expected squared-distance to the polar cone  $\mathcal{K}^*$ . Let  $\bar{\mu}(U;t)$  for  $U\subseteq\mathbb{S}^{p-1}$  and t>0 denote the volume of the set of points in  $\mathbb{S}^{p-1}$  that are within a Euclidean distance of at most t from U (recall that the volume of this set is equivalent to the measure of the set with respect to the normalized Haar measure on  $\mathbb{S}^{p-1}$ ). We have the following sequence of relations by appealing to the independence of the direction  $\mathbf{g}/\|\mathbf{g}\|_{\ell_2}$  and of the length  $\|\mathbf{g}\|_{\ell_2}$  of a standard normal vector  $\mathbf{g}$ :

$$\mathbb{E}[\operatorname{dist}(\mathbf{g}, \mathcal{K}^*)^2] = \mathbb{E}[\|\mathbf{g}\|_{\ell_2}^2 \operatorname{dist}(\mathbf{g}/\|\mathbf{g}\|_{\ell_2}, \mathcal{K}^*)^2]$$

$$= p \, \mathbb{E}[\operatorname{dist}(\mathbf{g}/\|\mathbf{g}\|_{\ell_2}, \mathcal{K}^*)^2]$$

$$\leq p \, \mathbb{E}[\operatorname{dist}(\mathbf{g}/\|\mathbf{g}\|_{\ell_2}, \mathcal{K}^* \cap \mathbb{S}^{p-1})^2]$$

$$= p \int_0^\infty \mathbb{P}[\operatorname{dist}(\mathbf{g}/\|\mathbf{g}\|_{\ell_2}, \mathcal{K}^* \cap \mathbb{S}^{p-1})^2 > t] dt$$

$$= p \int_0^\infty \mathbb{P}[\operatorname{dist}(\mathbf{g}/\|\mathbf{g}\|_{\ell_2}, \mathcal{K}^* \cap \mathbb{S}^{p-1}) > \sqrt{t}] dt$$

$$= 2p \int_0^\infty s \mathbb{P}[\operatorname{dist}(\mathbf{g}/\|\mathbf{g}\|_{\ell_2}, \mathcal{K}^* \cap \mathbb{S}^{p-1}) > s] ds$$

$$= 2p \int_0^\infty s [1 - \bar{\mu}(\mathcal{K}^* \cap \mathbb{S}^{p-1}; s)] ds.$$

Here the third equality follows based on the integral version of the expected value. Let  $V \subseteq \mathbb{S}^{p-1}$  denote a spherical cap with the same volume  $\mu$  as  $\mathcal{K}^* \cap \mathbb{S}^{p-1}$ . Then we have by spherical isoperimetry that  $\bar{\mu}(V;s) \geq \bar{\mu}(\mathcal{K}^* \cap \mathbb{S}^{p-1};s)$  for all  $s \geq 0$  [3]. Thus

$$\mathbb{E}[\operatorname{dist}(\mathbf{g}, \mathcal{K}^*)^2] \le 2p \int_0^\infty s[1 - \bar{\mu}(V; s)] ds. \tag{11}$$

From here onward, we focus exclusively on bounding the integral.

Let  $\tau(\psi)$  denote the volume of a spherical cap subtending a solid angle of  $\psi$  radians. Recall that  $\psi$  is a quantity between 0 and  $\pi$ . As in Lemma 2 let  $\psi(\mu)$  denote the solid angle of a spherical cone subtending a solid angle of  $\mu$ . Since the Euclidean distance between points on a sphere is always smaller than the geodesic distance, we have that  $\bar{\mu}(V;s) \geq \tau(\psi(\mu) + s)$ . Further, we have the following explicit formula for  $\tau(\psi)$  [4]:

$$\tau(\psi) = \omega_p^{-1} \int_0^{\psi} \sin^{p-1}(v) dv,$$

where  $\omega_p = \int_0^{\pi} \sin^{p-1}(v) dv$  is the normalization constant. Combining these latter two observations, we can bound the integral in (11) as:

$$\begin{split} \int_0^\infty s[1-\bar{\mu}(V;s)]ds & \leq & \int_0^\infty s[1-\tau(\psi(\mu)+s)]ds \\ & = & \int_0^{\pi-\psi(\mu)} s[1-\tau(\psi(\mu)+s)]ds \\ & = & \frac{(\pi-\psi(\mu))^2}{2} - \int_0^{\pi-\psi(\mu)} s\tau(\psi(\mu)+s)ds \\ & = & \frac{(\pi-\psi(\mu))^2}{2} - \omega_p^{-1} \int_0^{\pi-\psi(\mu)} \int_0^{\psi(\mu)+s} s\sin^{p-1}(v)dvds \end{split}$$

Next we change the order of integration to obtain:

$$\int_{0}^{\infty} s[1 - \bar{\mu}(V; s)] ds \leq \frac{(\pi - \psi(\mu))^{2}}{2} - \omega_{p}^{-1} \int_{0}^{\pi} \int_{\max\{v - \psi(\mu), 0\}}^{\pi - \psi(\mu)} \sin^{p-1}(v) s ds dv$$

$$= \frac{(\pi - \psi(\mu))^{2}}{2} - \omega_{p}^{-1} \int_{0}^{\pi} \frac{1}{2} \left[ (\pi - \psi(\mu))^{2} - (\max\{v - \psi(\mu), 0\})^{2} \right] \sin^{p-1}(v) dv$$

$$= \frac{\omega_{p}^{-1}}{2} \int_{0}^{\pi} (\max\{v - \psi(\mu), 0\})^{2} \sin^{p-1}(v) dv$$

$$= \frac{\omega_{p}^{-1}}{2} \int_{\psi(\mu)}^{\pi} (v - \psi(\mu))^{2} \sin^{p-1}(v) dv.$$

We now appeal to the inequalities  $\omega_p^{-1} \le \sqrt{p-1}/2$  and  $\sin(x) \le \exp(-(x-\frac{\pi}{2})^2/2)$  for  $x \in [0,\pi]$  to obtain

$$\int_0^\infty s[1 - \bar{\mu}(V;s)]ds \leq \frac{\sqrt{p-1}}{2} \int_{\psi(\mu)}^\pi (v - \psi(\mu))^2 \exp\left[-\frac{p-1}{2}(v - \frac{\pi}{2})^2\right] dv.$$

Performing a change of variables with  $a = \sqrt{p-1}(v-\frac{\pi}{2})$ , we have

$$\begin{split} & \int_0^\infty s[1-\bar{\mu}(V;s)]ds & \leq & \frac{1}{2} \int_{\sqrt{p-1}(\psi(\mu)-\pi/2)}^{\sqrt{p-1}\pi/2} \left(\frac{a}{\sqrt{p-1}} + \left(\frac{\pi}{2} - \psi(\mu)\right)\right)^2 \exp\left[-\frac{a^2}{2}\right] da \\ & = & \frac{1}{2} \int_{\sqrt{p-1}(\psi(\mu)-\pi/2)}^{\sqrt{p-1}\pi/2} \left[\frac{a^2}{p-1} + \left(\frac{\pi}{2} - \psi(\mu)\right)^2 + \frac{2a}{\sqrt{p-1}} \left(\frac{\pi}{2} - \psi(\mu)\right)\right] \exp\left[-\frac{a^2}{2}\right] da \\ & \leq & \frac{1}{2} \left[\int_{-\infty}^\infty \frac{a^2}{p-1} \exp\left[-\frac{a^2}{2}\right] da + \int_{-\infty}^\infty \left(\frac{\pi}{2} - \psi(\mu)\right)^2 \exp\left[-\frac{a^2}{2}\right] da + \int_0^\infty \frac{2a}{\sqrt{p-1}} \left(\frac{\pi}{2} - \psi(\mu)\right) \exp\left[-\frac{a^2}{2}\right] da \right] \\ & = & \frac{1}{2} \left[\frac{\sqrt{2\pi}}{p-1} + \sqrt{2\pi} \left(\frac{\pi}{2} - \psi(\mu)\right)^2 + \frac{2}{\sqrt{p-1}} \left(\frac{\pi}{2} - \psi(\mu)\right) \cdot \left(-\exp\left[-\frac{a^2}{2}\right]\right) \Big|_0^\infty \right] \\ & = & \frac{1}{2} \left[\frac{\sqrt{2\pi}}{p-1} + \sqrt{2\pi} \left(\frac{\pi}{2} - \psi(\mu)\right)^2 + \frac{2}{\sqrt{p-1}} \left(\frac{\pi}{2} - \psi(\mu)\right) \right] \end{split}$$

Here the inequality was obtained by suitably changing the limits of integration. We now employ Lemma 2 to obtain the final bound:

$$g(\mathcal{K} \cap B_{\ell_2}^p) \leq p \left[ \frac{\sqrt{2\pi}}{p-1} + \sqrt{2\pi} \left( \frac{\pi}{2} \sqrt{\frac{2 \log\left(\frac{1}{4\mu}\right)}{p-1}} \right)^2 + \frac{2}{\sqrt{p-1}} \left( \frac{\pi}{2} \sqrt{\frac{2 \log\left(\frac{1}{4\mu}\right)}{p-1}} \right) \right]$$

$$= \frac{p\sqrt{2\pi}}{p-1} \left[ 1 + \pi \log\left(\frac{1}{4\mu}\right) + \sqrt{\pi} \sqrt{\log\left(\frac{1}{4\mu}\right)} \right]$$

$$\leq 20 \log\left(\frac{1}{4\mu}\right).$$

Here the final bound holds because  $\mu < 1/4e^2$  and  $p \ge 12$ .  $\square$ 

## References

[1] Chandrasekaran V, Recht B, Parrilo P, Willsky A (2012) The convex geometry of linear inverse problems. Foundations of Computational Mathematics 12:805–849.

- [2] Brieden A, et al. (1998) Approximation of diameters: randomization doesn't help In Proceedings of the 39th Annual Symposium on Foundations of Computer Science pp 244–251.
- [3] Ledoux M (2000) The Concentration of Measure Phenomenon (American Mathematical Society).
- [4] Klain D, Rota G (1997) Introduction to Geometric Probability (Cambridge University Press).